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ABSTRACT

To an air traffic controller,
allowing a particular takeoff or landing
operation to occur produces a relative
performance payoff which can vary with
the number of passengers on the
aircraft, the relative safety of the
operation, the amount of delay already
‘imposed on the aircraft, the amount of
fuel remaining in an aircraft trying to
land, etc. Within a given time span,
the controller can achieve better
traffic handling performance and a more
balanced treatment of these factors if
he or she maximizes the total payoff of
all takeoff/landing operations
occurring, subject to safety-related
constraints. The optimized variables
are the times at which the individual
operations are allowed to occur. Some
of the constraints which must be obeyed
are that each operation occupies a given
time window on any specified runway and
that no two operations on the same
runway are allowed to occur so closely
in time as to be concurrent. Also, the
waiting time for any aircraft running
low on fuel is not allowed to exceed a
safety limit.

This paper presents a technique for
choosing optimal times for the
operations, such that all constraints
are obeyed and the total performance
payoff, taken over all aircraft
involved, is maximized. Three features
of particular utility in the optimum
seeking technique are: any continuous
functions can be used to represent the
individual operation payoffs, the search
progress is easy to visualize, and trade
studies are simplified since sensitivity
results in the neighborhood of the final
solution are immediately available
without recomputing the optimum. The
latter two features enhance the user
understanding of why the solution is
correct. This, in turn, increases
confidence in the optimum obtained.

INTRODUCTION

The intent of this paper is two-
fold:

1. To present a useful and flexible
formulation of an important air
traffic control problem seen in

the terminal area

2. To give a computational approach
for solving that problem.

The issue addressed is the allocation of
runway space and time to competing
flights attempting to land and take off
to and from busy terminals. The study
approach illustrated here offers
flexible formulation of the allocation
payoff function so that many different
allocation policies can be assessed and
compared.

As seen in Ref. 1, the air transit
system has made progress in reducing the
number of aircraft kept waiting to land
in terminal control areas (TCAs). This
has been accomplished, in part, by
performing country-wide resource
allocations on the flow to the most busy
airports, so that aircraft destined for
busy TCAs are delayed at their departure
points. This eases the airborne i
loitering burden at the overloaded
terminals.,

Nevertheless, improvements in
national traffic flow depend in part on
the success of traffic flow into and out
of the TCAs. If the TCA flow is
improved at the beginning and end of
flights, the end-to-end flow is also
improved. Also, any excess capacity
generated by better TCA scheduling may
allow emergency delays in the national
system to be temporarily removed at the
local level.

The particular formulation of the
TCA problem assumed here and the
solution approach taken offer
flexibility in performing studies of
widely differing scheduling
philosophies. There are other rationale
for granting TCA service to a waiting
a/c which may be more desirable than the
presently-used "first come, first
served” policy. For instance, it may be
important to grant higher priority to
large a/c with many passenger which has
already seen severe delays than to a
small commuter plane which is on time.
This approach may be driven by the
motivation to reduce the average delay
per passenger.

The optimization approach used
below can deal with any continuous
payoff function. Thus, in deciding the
policy to be used for scheduling, there
is a wide latitude of choice.

The above issue and many others,
fundamental to improving the success of
the TCA scheduling effort, can be
studied and the results compared.

PROBLEM STATEMENT



Assume that there are n aircraft
trying to use m runways. If the event
of the ith runway servicing the jth a/c
is.allowed to occur, as opposed to using
a different runway, there is a pavoff
due tc accomplishing that operation.

Let the payoff for this ijth event be
dernoted Vij. The payoff can be a
function of many variables. However,
other than making the decision as to
whether or not a given event is to occur
at all, the decision parameter of
interest is time. Thus, the payoff
function is denoted Vij(tij), meaning
the ij event payoff, dependent on the
tij assigned time of occurrence.

Every runway operation occupies the
runway for some time window, a fact
causing serious constraints on aircraft
operations. This window varies,
generally, with the particular a/c and
runway involved and can be very complex
to calculate. For a/c landings the
window includes data on time required to
exit the TCA and land. Takeoff and
ingress into the TCA influences this
window size for departure operations.
References 2-4 discuss challenges and
opportunities with these operations and
in one case, (Reference 2), provide
optimal paths for doing so. Reference 5
discusses an even more complex issue:
the “cross-coupled" constraints on
close, adjacent runways due to
turbulence.

For the purposes of this study, the
window duration, Tij, is considered to
be constant over schedule times. The
decision parameter for a given event,
tij, is defined for the center of the
Tij window. This convention is adopted
to facilitatz the mathematics of safety
constraints, discussed below.

To help prevent accidents, the
windows of two a/c using the same runway
are not allowed to overlap. This is
expressed, for the jth and kth a/c using
the ith runway, by the constraint:

I tij - tik | > (Tij + Tik)/2 (1)

The absolute value brackets account for
the fact that we do not know, before
performing the optimization, which of
these events will occur before the
other. Defining the event time, tij, at
the center of the associated Tij window
allows a more simple expression of the
constraint.

The above constraint concerns
simultaneous use of the same runway.
Due to turbulence generated near the
ground by a large a/c using a runway, a
nearby runway may become temporarily
dangerous to use, particularly for a
smaller a/c, as noted above. It is
possible to model this type of
constraint. If the ith runway,

contemplated for use by the jth (large)
a/c, is near the qth runway, with
possible use by the rth (small) a/c, the
constraint follows.

f tij - tqr | > (Tij + Tqr)/2 (2)

The information needed to choose the T
quantities and to decide on which
constraints, of the form of equation
(2), to write can be considerable.
However, despite the fact that this
formulation can encompass much
information about the problem, the
formulation is still simple to work
with,

In addition to these constraints,
which deal with interactions between
a/c, there are constraints on the
earliest and latest time that an a/c can
be serviced. The early time limit
relates to the set of Tij windows which
the jth a/c faces over all of the
runways. Because tij is defined for the
center of the Tij window and this window
describes the time consumed in
performing the contemplated landing or
takeoff operation, the window cannot
begin before the present instant. This
means that

tij > Tij/2 ’ (3)

in all accepted events. The late time
limit does not relate to the operation
window but, rather, expresses the
maximum time allowed for the a/c to
remain aloft. This is ultimately set by
the amount of fuel remaining onboard.

As noted above, the maximum time is
denoted by Wj for the jth a/c, and
produces the constraint:

tij < WwWj 4)

Sometimes, the value of Wj is so large,
relative to the times of strong payoff
available for that a/c, that the value
has virtually no effect on the
optimization solution. In other
instants, an example of which is seen
below, the size of Wj can severely
restrict the allowable size of the tij
space available for searching.

The goal of the optimization is to
maximize the total payoff of all of the
a/c-runway events which are allowed to
occur. Thus, the optimization has two
aspects which must be considered
simul taneously:

1. The event describing which
runway serves each a/¢c must be
decided

2. After all such events have been
chosen, the time of each must be
selected, subject to a relevant
subset of the above constraints,
80 as to maximize the total

;



payoff over all allowed events.

As discussed below, generation of
optimal times may change the set of
events selected, requiring the choice of
a new set of allowed events. Also, time
constraints, ignored for events which
have not been selected, may become
relevant if those events are
"activated".

SOLLTICN APPROACH

To be sure of obeying all
constraints, the first starting point is
chosen to lie on the outer W constraint
boundary. Thus, the times are chosen to
be, collectively, as large as possible.

As seen in the low-order example
below, the overall time region is not
simply connected. The region is
composed of at least two subregions
which have no common points. Thus, it
is impossible to reach some parts of the
region from other parts. This occurs
because the constraints in equations (1)
and (2) have absolute value signs on the
time difference between each pair of
events. The absolute value sign
reflects the fact that there is
generally, no reason to believe that one
a/c in the constraint will land ahead of
the other one. Thus, both possibilities
must be checked for each constraint.

A gradient search is used to find
the optimal tij set for a region, once
the allovwed events have been selected.
(See Reference 6 for discussions of the
gradient techniques used.) The
implication of the disconnected
subregions phenomenon on the gradient
search is that, in general, a new search
path must be started and carried through
to its conclusion for each subregion.
(Thus, omnce we have begun a search with
one of the two a/c landing ahead of the
other, it is not possible to reverse
this order without restarting the search
with the other order assumed.) Once all
subregions have been explored, the
optima found in all cases are compared
and the "best" of all is selected.

There is more discussion of this
point, below. The balance of this
section is devoted to treatment of the
search of a single subregion.

Starting at the initial point, the
first activity is to select the events
to be considered. This is done by
choosing the runway usage event for each
a/c which has the highest payoff.

The next action is to compute the
gradient over all of the events, whether
selected or not. We do not, as yet,
need to consider the effect of any
constraints since no such surfaces have
been intercepted. The gradient defipes

a linear path forward. The
intersections of this path with all
constraints for selected events are
computed with little effort, since they
are solutions of simultaneous linear
equations. (Intersections with
constraints for events not selected sre
ignored, at present.)

The first intersection along the
path is identified, and a step of length
sufficient to reach that point is '
taken. The times for nonselected events
are carried forward using their
respective gradient components.

At the constraint surface
intersection, a check is made to see if
all of the selected events are still
dominant for their respective aircraft.
If some events have been surpassed by
others, we need to know where along the
path traveled the changes occurred. The
gradient is computed at the end of the
step and the projection, or "shadow", of
the gradient in the step path is
computed. For each pair of events
changing places, the corresponding
gradient data at the start and end of
the step, as well as the start and end
points, are used to make cubic )
interpolation estimates of where the
crossover occurred.

Once these estimates are made, the
corresponding times are set equal to the
estimates and the payoff contributors,
reversing roles, are computed. In
general, this process of stepping
followed by cubic interpolation must be

. repeated until the points at which

crossover occurs are located. If there
is more than one crossover point, the
one of interest lies closest to the
original point of departure for the
path. The step is made to that point
and the new set of selected events is
identified.

The search now proceeds with the
new set of selected events. However, a
new set of constraints has now been
introduced, and one or more of them may
be currently violated. 1If there are
more thean one, a series of correction
steps is made, each of which lands on
the appropriate constraint boundary;
each, also, achieves the greatest
overall payoff improvement consistent
with reaching the constraint.

The direction of each correction
step is calculated by taking the inner
product of the gradient with the
direction of most rapid progress to
constraint satisfaction. If the inner
product is negative or zero, the step is
made in the direction perpendicular to
the gradient which, itself, so as to
minimize the inner product between that
perpendicular and the direction of most
rapid progress. If the inner product is



positive, the step is in the gradient
direction; since the constraints are all
linear, the intersection point is easily
calculated.

Now, reconsider the earlier
situation of first intersecting the
constraint surface. If, at the end of
the original unconstrained gradient
step, the set of selected events has not
changed, we check to see if we should be
looking for a maximum back along the
path we have travelled. Such a
condition is checked by computing the
payoff gradient at the constraint
boundary and using it to form two inner
products., The first is the inner
product of the payoff gradient with the
direction of most rapid improvement in
constraint satisfaction. (The latter
direction, discussed above, is normal to
the constraint surface and pointing into
the feasible region.)

The second inner product involves
the gradient and the previous search
direction. If this inner product is
negative, we must search back in the
direction we have come from. If this
inner product is positive and if the
inner product involving the constraint
is negative, the gradient points into
the constrained region and the next step
should lie in the constraint surface.

If this inner product is positive, the
new gradient points away from the
constraint. If the gradient points away
from the constraint surface but does not
call for reverse direction back on the
prior path, we should take an
unconstrained step along the new
gradient direction.

If searching backwards along the
unconstrained approach direction is
called for, a similar approach to that
for discovering the dominant event
crossover point, discussed above, is
followed. The beginning and ending
points and gradients are used, with the
terminal gradient projected into the
search path. A cubic polynomial is fit
to the data. The maximum is found by
solving for that zero root of the
quadratic derivative which has a
negative second derivative.

A step is taken to the predicted
maximum and the above process repeated a
few times until satisfactory convergence
is reached. At this point we are now at
a maximum along the original search
direction.

Since we have not, as yet,
encountered any constraints, we can
search the space with a more efficient
routine which is designed for rapid
convergence in unconstrained regions.
The approach used is the conjugate
gradient method. At the present
maximum, we calculate a conjugate

direction. (See Reference 6.) We step
in that direction to the next constraint
by solving for the step length as
before. Also, as before, we check to
see if the set of selected events has
changed and if the constraint surface
should be entered. The process follows
exactly as described above.

If there is no change in the
selected event set and we should search .

-back along the path we have cone,

indications are that the maximum can
still be sought with an unconstrained
search. Thus, we find the maximum and
compute another conjugate direction to
search, If at any time we either
intersect a constraint or find that the
event selection changes, we,
temporarily, take no more conjugate
gradient steps. As soon as we can take
the conjugate steps again, we do.

Return, again, to the situation at
the end of the first, unconstrained
step. If, where the constraint region
is intersected, the optimum search
direction takes us into it, we compute
the gradient projection in the surface.
The gradient projection, P, is
calculated from the unconstrained
gradient, G, and the above-mentioned
{unitary) direction of constraint
satisfaction, C.

P = G-(cCc,@>/6 ¢ (5)

This formula is based on the Gram-
Schmidt orthogonalization procedure, in
which that part of G parallel to C is
removed.

A step can be taken in this surface
without concern for leaving it
"involuntarily”, since both step path
and surface are linear. The
intersection of the step in the surface
with the next constraint is calculated
algebraically and the step is taken.
Note that the new point satisfies both
the old and the new constraints. The
unconstrained gradient is computed at
the new point.

Similar checks and decisions are
now made as was done at the point of
intersection with the first constraint.
First, the set of selected events is
examined to see if any other events have
higher payoff and should be
substituted. As with the unconstrained
step, the gradient components for the
events not selected carry those events
to higher payoff values during the
step. After the step is over, we may
find that some of the selected events
need to be replaced.

If this occurs, we lock back in the
opposite direction, using repeated cubic
fits as before, to find the first point
during this step at which the event set



changed. We move to that point and
change the event set to include the
first new event. In general, there will
now be a new constraint set and it may
be violated. As before, we need to take
correction step(s) to obey the newly-
activated constraint(s).

Any correction step is computed
without attempting to stay in the old
constraint surface, since such an
operation may no longer be optimal.
Whenever new constraints arise, the
first effort is to obey them; then, the
decision as to what surface to step in,
if any, is made. One of the
characteristics of a first-order
gradient search is that the recent past
is "forgotten" (although the second-
order conjugate gradient approach does
retain and use "memory" of the previous
ateps).

If the above-mentioned gradient
projection step did not result in a
change of the event set, other checks
are required. The inner product of the
gradient at the end is formed with the
search direction taken. 1If this inner
product is negative, the indication is
that a maximum has been passed during
the step. The same procedure is used,
as seen above for the unconstrained
step, to locate and step to this point.

If this inner product is positive,
then the check is made to see if the
unconstrained gradient points into
either active constraint. For any
constraints that this is true, the
gradient projection into all such
surfaces, simultaneously, is computed.-
The next step will be taken in that
direction. If the unconstrained
gradient points into no constrained
regions and does not call for a retreat
back the previous path, the indication
is that this direction should be
followed into the unconstrained region.

The above process is followed,
stepping in constrained or unconstrained
regions and changing selected event
sets, as required. The process self-
terminates at a local maximum from which
no further optimizing steps are
possible. This condition can occur in
one of three ways:

1. The search can be locally
unconstrained and reach a point
at which the norm of the
gradient is acceptably close to
zero :

2. The search can be in one or more
constraint surfaces,
"simultaneously, and can reach a
point in these surfaces at which
the gradient projection is
acceptably close to zero

3. The search can end with
all selected event variables
constrained and the
unconstrained gradient calling
for violations of all such
constraints.

Note that the above discussion
describes a search ending on a local
maximum. This is the normal output of a
gradient solution process. The question
of whether or not this is a global
maximum must be addressed. A standard
technique is to start at several
separated initial points and see if the
solution always ends at the same
location. However, this "brute force"
technique may not be necessary when
known payoff function characteristics
are utilized and the space to be
searched is understood.

Visualization of the search
progress and insight into sensitivity
relationships about the optimum solution
point are important for building
understanding of and confidence in the
solution obtained. Since the solution
approach is based on gradient search
techniques, first-order sensitivity
relationships are available for all
variables at any step during the search
process. One simply uses the local
unconstrained and constrained gradients
and the directions of constraint
obedience for any active constraints to
form any sensitivity function desired.

Visualizing the search progress is
more difficult. Although the following
example lies in a space of low enough
dimension to be plotted, typical
problems of interest are too complex for
such methods. Fortunately, a technique
has been devised which enables
visualization regardless of the space
dimension.

Consider two adjacent step vectors,
Sn and Sn+1, occurring in the search
process. Each represents a search
direction. The angle between these two
directions, An-n+l, is found from the
inner product of the two vectors divided
by the product of their norms:

An-n+l = arccos(<Sn,Sn+1>/(|ISn} [Sn+1}))
(6)

The search is visualized in a 2-D
cartesian frame by plotting the SO
vector along the positive x axis with
the tail at the origin. The point of
the vector "lies"” at the end point of
the first step. From this point, a
vector of length |S1{ is drawn, at an
angle of AO-1 from the prior vector.
The end point of this vector represents



the location of the end point of the
.second step.

This process is repeated for the
balance of the search., For each new
step the new vector is drawn with tail
at the point of the previous one and
lying at an angle from the previous
vector equal to the An-n+l measured
between the present and previous steps.
This process is illustrated in the
example given below.

Note that this visualization tool
does not represent the search uniquely,
because orientation in the full-
dimension space is lost in the inner
product operation. However, it is
useful for building intuition about the
optimization process.

LOW-ORDER EXAMPLE CASE

In this case three aircraft are
attempting to use two runways. Figure 1
illustrates the problem. There are six
possible a/c-runway events. The event
parameters and payoff functions are
identified by i,j indices, in which i
represents the runway number (1 or 2)
and j represents the a/c number (1, 2 or
3). The individual plots are of event
payoff value over the time, in minutes,
assigned for the event. For each plot
the value of T on the t scale, and inner
and outer time constraint boundaries due
to T and W, respectively, are drawn.

The starting point for the initial
search is the outer time boundaries seen
in Figure 1. Throughout this search the
set of maximum payoff events remains
constant. The 1,1 as well as the 2,2
and 2,3 events are always dominant.

This allows us to deal with only those
times and to visualize the search space
via the split-scale 3-D plot shown in
Figure 2. There, the isoclines of
constant overall payoff are presented,
overlaid on the constraint boundaries.
The diagonal forbidden region in the
figure shows the effect of the "absolute
value” time constraint prohibiting the
time windows of a/c 2 and 3 from
overlapping when they use runway 2.
This type of constraint is seen in
equation (1), above.

Two search paths are shown in
Figure 3. They correspond to the
initial search from the extreme time
boundaries and another search covering
the second, upper feasible region in the
2,2-2,3 plane, The interpretation of
searching the lower feasible region in
the figure is that a/c 3 is assumed to
use runway 2 before a/c 2. For the
other case, searching the region above
implies that a/c 2 lands before a/c 3.

In each case the search starts at a
circled point and takes an unconstrained
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step to the first constraint
intersection. The initial search takes
step 1 to the "absolute value"
constraint discussed above. Step 2
occurs in this constraint boundary until



the lower limit constraint on 2,3 time
is reached. This fixes both the 2,3 and
2,2 times as the final step, 3, moves to
the solution at the 1,! time boundary.
The total final payoff achieved is 3.92

The second search, implying that
a/c 2 lands earlier, takes the first
step, A, to the lower limit on 2,2
time. Step B then travels in the 2,2
boundary until the upper absolute value
constraint is reached. There, the 2,2
and 2,3 times are fixed as before. The
final step, C, goes to the 1,1 inner
time boundary before stopping with a
total final payoff of 3.98.

It appears to be a coincidence,
caused by the particular relationship of
event payoff and constraints, that the
two payoff values are nearly the same.
The isocline values seen on the plots
appear to disagree with the payoff
values achieved. However, this effect
occurs because the isoclines are shown
for the boundary planes and do not
accurately reflect the isocline behavior
in the internal region, away from these
planes.

Figure 4 presents the above-
described "inner product" visualizations
of the two searches. Both plots are on
the same scale and the angle between the
two first steps is seen. The utility of
this representation can be especially
appreciated if we imagine it describing
a 15-D search instead of the 3-D case,
here.
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Figure 4: Visualizing Each Search

FUTURE PATHWAYS

The solution techniques presented
above need to be developed further and
applied to more typical ATC problems of
higher dimensions. However, the robust

handling of many different payoff
functions, high visibility into the
solution process and readily-available
sensitivity functions for trade studies
offered by this approach promise to be
invaluable aids for implementing and
understanding mcre advanced TCA
allocation philesophies.

Full fruition of such efforts can
be greatly assisted when this
optimization approach is integrated with
and incorporated into a well-designed,
"smart" ATC work station.
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